
Updated October 8, 2025

Homework problems for AMAT 540A (Topology I), Fall 2025. Over the course of the semester
I’ll add problems to this list, with each problem’s due date specified. Each problem is worth
2 points.

Solutions will be gradually added (and may be hastily written without proofreading).

——————————–

Problem 1 (due Weds 9/3): Let A be a set and let R be a relation on A that is symmetric
and antisymmetric, but not reflexive. Prove that there exists a ∈ A such that for all b ∈ A,
aRb does not hold.

Solution: Since R is not reflexive, we can choose a ∈ A such that aRa does not hold. Now
for any b ∈ A, if aRb then by symmetry bRa, and by antisymmetry a = b, so aRa. We
conclude aRb never holds. □

Problem 2 (due Weds 9/3): Let f : A → B be a function. Suppose that for all B0 ⊆ B we
have f(f−1(B0)) = B0. Prove that f is surjective.

Solution: Let b ∈ B. We have f(f−1({b})) = {b}, so f−1({b}) is non-empty, i.e., there exists
a ∈ A with f(a) = b. Thus f is surjective. □

Problem 3 (due Weds 9/3): Prove (using element arguments) that (A\B)∩C = (A∩C)\B
for sets A, B, and C.

Solution: (⊆): Let x ∈ (A \B) ∩C, so x ∈ A and x ̸∈ B and x ∈ C. Thus x ∈ (A ∩C) \B.
(⊇): Same thing really, this one was too easy. □

—————————————–

Problem 4 (due Weds 9/10): Let X be a set and view the power set P(X) as a partially
ordered set with the partial order ⊆. Prove that every non-empty subset A ⊆ P(X) has a
least upper bound.

Solution: Let U =
⋃

A∈AA. Since A ⊆ U for all A ∈ A, U is an upper bound of A. For any
other upper bound V , we have A ⊆ V for all A ∈ A, and hence

⋃
A∈AA ⊆ V , i.e., U ⊆ V .

Thus U is a least upper bound. □

Problem 5 (due Weds 9/10): Let X = N with the partial order | (this is “divides”, i.e., “a|b”
means “a divides b”). Prove that every non-empty subset S ⊆ X has a greatest lower bound
with respect to |. Does every such S have a least upper bound?
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Solution: Let ∅ ≠ S ⊆ X. Let D = {d ∈ X | d|s for all s ∈ S}, so D non-empty since
1 ∈ D. Moreover, D is finite since each s ∈ S has only finitely many divisors. Let ℓ ∈ X be
the least common multiple of the elements of D. Since every element of S is a multiple of
every element of D, ℓ is a lower bound (aka divisor) of every element of S, and since every
element of D is a lower bound(aka divisor) of ℓ, it is a greatest lower bound of S.
As for least upper bounds, no, for example S = X itself has no upper bound (no number is
a multiple of every number), much less a least upper bound. □

Problem 6 (due Weds 9/10): A total order ≤ on a set X is called a well order if for all
∅ ≠ S ⊆ X, S has a greatest lower bound in X, and moreover the greatest lower bound of
S lies in S. Prove that the lexicographic order on N× N coming from the usual order on N
is a well order.

Solution: Let ∅ ≠ S ⊆ N × N. Let x0 = min{x ∈ N | (x, y) ∈ S for some y ∈ N}. Since
S is non-empty and N is well ordered, x0 exists. Let y0 = min{y ∈ N | (x0, y) ∈ S}, which
exists for the same reason. Now (x0, y0) ∈ S and we claim it is a greatest lower bound for
S. Indeed, for any (x, y) ∈ S either x = x0 and hence y0 ≤ y, so (x0, y0) ≤ (x, y), or else
x > x0 and hence (x0, y0) < (x, y). This shows that it is a lower bound, and it is a greatest
lower bound since it lies in S and so is an upper bound of every lower bound of S. □

—————————————–

Problem 7 (due Weds 9/17): Let X be a set and ♠ ∈ X. Let T = {U ⊆ X | ♠ ̸∈ U}∪ {X}.
Prove that T is a topology.

Solution: We have X ∈ T for free, and ∅ ∈ T since ♠ ̸∈ ∅. Now let Uα ∈ T for some
family {Uα}α∈Λ, so for each α either Uα = X or ♠ ̸∈ Uα. Set U :=

⋃
α Uα. If U ̸= X then

Uα ̸= X for all α, so ♠ ̸∈ Uα for all α, so ♠ ̸∈ U . In this case U ∈ T , and the other case is
that U = X, so again U ∈ T . Finally, let U, V ∈ T , and we want to show U ∩ V ∈ T . If
U = V = X then U ∩ V = X ∈ T . If U ̸= X then ♠ ̸∈ U , so ♠ ̸∈ U ∩ V , so U ∩ V ∈ T .
Analogously if V ̸= X then U ∩ V ∈ T , so we are done. □

Problem 8 (due Weds 9/17): Prove that {U ⊆ N | |U | = ∞} ∪ {∅} is not a topology on N.

Solution: Let U = {1, 2, 4, 8, 16, . . . } and V = {1, 3, 9, 27, 81, . . . }. Then U, V are in this set
but U ∩ V = {1} is not. □

Problem 9 (due Weds 9/17): Let X be a set and F : X → P(X) a function, so for each
x ∈ X we have F (x) ⊆ X. Construct a subset A ⊆ X that does not equal F (x) for any
x ∈ X, and conclude F is not surjective. (This shows that power sets always have strictly
bigger cardinality.)

Solution: Set A := {x ∈ X | x ̸∈ F (x)}. Now for any x ∈ X, if x ∈ A then by the definition
of A we have x ̸∈ F (x), so A ∩ F (x) = ∅. This holds for all x ∈ X, so A cannot even
intersect any of the F (x), much less equal one of them, unless A = F (x) = ∅ for all x ∈ X.



But if F (x) = ∅ for all x ∈ X then x ̸∈ F (x) holds for all x ∈ X, so in order to achieve
A = ∅ we need X = ∅, and in this case F is the empty function from ∅ to {∅}, which is not
surjective. □

—————————————–

Note: Remember there’s an exam in class on Weds 9/24. It covers up through the product
topology.

Problem 10 (due Weds 9/24): Let X and Y be topological spaces and let π1 : X×Y → X be
the first projection function. Prove that for any open set W in X×Y , the image U := π1(W )
is open in X.

Solution: First note that if W is basic open, say W = U × V for U open in X and V open
in Y , then π1(W ) = U is indeed open in X. Now for arbitrary W , say W =

⋃
αWα for Wα

some basic open sets. Then π1(W ) =
⋃

α π1(Wα) is a union of open sets, hence open. □

Problem 11 (due Weds 9/24): Let X be a partially order set with partial order ≤. For each
x ∈ X let Bx := {y ∈ X | x ≤ y}. Prove that B := {Bx | x ∈ X} is a basis for a topology
on X.

Solution: Since ≤ is reflexive, for all x ∈ X we have x ∈ Bx, and so the Bx cover X. Now
suppose z ∈ Bx ∩ By, so x ≤ z and y ≤ z. Then for any w ≥ z, by transitivity we have
x ≤ w and y ≤ w, so w ∈ Bx ∩ By, which tells us Bz ⊆ Bx ∩ By. Again by reflexivity we
have z ∈ Bz, so all in all we have z ∈ Bz ⊆ Bx ∩By, so the Bx form a basis. □

Problem 12 (due Weds 9/24): Let X = R× R with the lexicographic order. Let Tlex be the
order topology and X and let Tprod be the standard (product) topology on X. Prove that
Tlex is a refinement of Tprod, but Tprod is not a refinement of Tlex.

Solution: Let U × V be a basic open set in Tprod and let (x, y) ∈ U × V . Choose ε > 0 such
that (y− ε, y + ε) ⊆ V . Now the lex order interval ((x, y− ε), (x, y + ε)) contains (x, y) and
lies in U×V , so we conclude that Tlex is a refinement of Tprod. To see that the other direction
is false, note that the lex order interval ((0, 0), (0, 1)) is open in Tlex, but not in Tprod since
any open neighborhood of (0, 0) in X contains points with first entry non-zero but all the
points in ((0, 0), (0, 1)) have first entry zero. □

—————————————–

Problem 13 (due Weds 10/1): A topology on a set X is called Alexandrov if the collection
of closed sets also forms a topology. Prove that if the finite complement topology on X is
Alexandrov then it is discrete.



Solution: Let x ∈ X, so {x} is closed in the finite complement topology. Since this topology
is Alexandrov, arbitrary unions of closed sets are closed. Every set is the union of its singleton
subsets, so every subset is closed, so the topology is discrete. □

Problem 14 (due Weds 10/1): Let P := {(x, y) ∈ R × R | y = x2} be the graph of y = x2.
Prove that P is closed in R× R (by proving its complement is open).

Solution: Let (x0, y0) ∈ (R×R)\P , so x2
0 ̸= y0. The function d(x, y) :=

√
(x− x0)2 + (y − y0)2

from R × R to R restricted to P has outputs of the form
√

(x− x0)2 + (x2 − y0)2, which
is bounded below by some ε > 0 since x2

0 ̸= y0. Now the open ball of radius ε centered at
(x0, y0) lies outside P , and we conclude P is closed. □

Problem 15 (due Weds 10/1): Let X be a topological space with topology T , and Y ⊆ X a
subspace with the subspace topology TY . Assume that {x} is closed in X for all x ∈ X. Let
ϕ : T → TY be the function ϕ(U) := U ∩ Y . (So we know ϕ is surjective.) Prove that if ϕ is
injective then Y = X.

Solution: Suppose ϕ is injective. Let x ∈ X. We know X \ {x} is open, and does not equal
the open set X, so by injectivity ϕ(X \ {x}) ̸= ϕ(X), i.e., (X \ {x}) ∩ Y ̸= Y . We conclude
x ∈ Y , and so X = Y . □

—————————————–

Problem 16 (due Weds 10/8): Prove that if a topological space is Hausdorff and Alexandrov
(see Problem 13), then it is discrete.

Solution: Let A be a subset of such a space X. Since X is Hausdorff, {a} is closed in X for
all a ∈ A. Since X is Alexandrov, the union A =

⋃
a∈A{a} of closed sets is closed. Thus

every subset of X is closed, i.e., X is discrete. □

Problem 17 (due Weds 10/8): Let f : X → Y be a function. Suppose Y is a topological
space. Let T := {f−1(U) | U is open in Y } ⊆ P(X). Prove that T is a topology on X, and
that any topology T ′ on X with respect to which f is continuous is a refinement of T .

Solution: Since ∅ = f−1(∅) and X = f−1(Y ) we have ∅, X ∈ T . Now let {Uα}α∈Λ ⊆ T , so
for each α we have Uα = f−1(Vα) for some open Vα ⊆ Y . Then

⋃
α∈Λ Uα =

⋃
α∈Λ f

−1(Vα) =

f−1
(⋃

α∈Λ Vα

)
is of the form f−1(V ) for V open in Y , hence this union is in T . Finally,

an analogous thing works for intersections. Now if T ′ is any topology on X such that f is
continuous, then f−1(V ) ∈ T ′ for all open V in Y , and so every set in T lies in T ′. □

Problem 18 (due Weds 10/8): Let X = N with the finite complement topology. Let (xn) be
the sequence xn = n. Prove that for all y ∈ X, the sequence (xn) converges to y.



Solution: Let U be an open neighborhood of y, so X \ U is finite. Let N = max(X \ U).
Then xn ∈ U for all n > N , so in particular xn ∈ U for all but finitely many n, i.e., (xn)
converges to y. □

—————————————–

Nothing due Weds 10/15, since Monday and Tuesday are October break.

—————————————–


